Abelian G2 Cosmologies / Gowdy Vacuum Cosmologies
- Gowdy R H: Gravitational Waves in Closed Universes,
Phys. Rev. Lett. 27 (1971), 826
- Gowdy R H: Vacuum Spacetimes and Compact Invariant
Hyperspaces: Topologies and Boundary Conditions,
Ann. Phys. (N.Y.) 83 (1974), 203
- Wainwright J, S W Goode: Some Exact Inhomogeneous Cosmologies
with Equation of State $p=\gamma\,\mu$, Phys. Rev. D
22 (1980), 1906
NB: $\mu \ge p \ge 0$, $0 < \gamma < 1$, $\omega^{a}=0$;
both KVF HSO and mutually orthogonal; separability ansatz employed;
solution contains two constant essential parameters;
$\mathbb{R}^{3}$ spatial topology; Petrov type I; models do
not approach spatial homogeneity at large times or near the
singularity and are not self-similar; $K = 0$ LRS subcase.
- Kramer D: A New Inhomogeneous Cosmological Model in General
Relativity, Class. Quantum Grav. 1 (1984),
611
NB: Perfect fluid;
non-orthogonally transitive symmetry group; $\gamma=2$ plus
$\Lambda$ matter interpretation.
- Hewitt C G, J Wainwright, S W Goode: Qualitative Analysis of
a Class of Inhomogeneous Self-Similar Cosmological Models,
Class. Quantum Grav.
5 (1988), 1313
NB: Dynamical systems analysis of dynamical
equilibrium states of diagonal $G_{2}$ perfect fluid class
with $p(\mu) = (\gamma-1)\,\mu$, I: compact state space.
- Feinstein A, J M M Senovilla: A New Inhomogeneous
Cosmological Perfect Fluid Solution with $p=\mu/3$,
Class. Quantum Grav. 6
(1989), L89
NB: Follows the lines of Wainwright/Goode
'80; very good introduction into the motivation for exact solutions
of the EFE; $\sigma_{ab}$ degenerate in plane orthogonal to group
orbits (PLRS); solution contains no free functions of
$x$-coord but any one essential parameter $a = \mbox{constant}$;
$\mathbb{R}^{3}$ spatial topology.
- Hewitt C G, J Wainwright: Orthogonally Transitive $G_{2}$
Cosmologies, Class. Quantum Grav. 7 (1990), 2295
NB: Contains a formal quasi-linear (non-symmetric) hyperbolic
evolution system with frame derivatives for 9 expansion-normalised
dependent variables (functions of local coordinates $t$ and $x$).
- Isenberg J, M Jackson, V Moncrief: Evolution of the
Bel-Robinson Energy in Gowdy $\mathbb{T}^{3}\times\mathbb{R}$
Space-times, J. Math. Phys. 31 (1990), 517
- Isenberg J, V Moncrief: Asymptotic Behavior of the
Gravitational Fields and the Nature of Singularities in Gowdy
Spacetimes, Ann. Phys. (N.Y.) 199 (1990),84
NB:
Polarised Gowdy case only; establishes concept of "asymptotically
velocity term dominated" singularities; employs method of "energy
functionals" to prove existence theorems.
- Senovilla J M M: New Class of Inhomogeneous Cosmological
Perfect-Fluid Solutions without Big-Bang Singularity,
Phys. Rev. Lett. 64 (1990), 2219
NB: Both KVF HSO, so line element diagonal
("polarised" case); comoving coords; irrotational perfect fluid
with $p=\mu/3$ (radiation); Petrov type I; $\sigma_{ab}$ degenerate
in plane orthogonal to group orbits (PLRS); solution contains
no free functions of $x$-coord but any one essential parameter
$a = \mbox{constant}$; $\mathbb{R}^{3}$ spatial topology;
change to cylindrically symmetrical
$\mathbb{R}^{2}\times\mathbb{S}^{1}$ spatial topology discussed.
- Wils P: A Class of Inhomogeneous Perfect Fluid Cosmologies,
Class. Quantum Grav. 7 (1990), L43
NB: $\xi_{\mu}\,\eta^{\mu}=0$.
- Hewitt C G, J Wainwright, M Glaum: Qualitative Analysis of a
Class of Inhomogeneous Self-Similar Cosmological Models: II,
Class. Quantum Grav.
8 (1991), 1505
NB: Dynamical systems analysis of dynamical
equilibrium states of diagonal $G_{2}$ perfect fluid class
with $p(\mu) = (\gamma-1)\,\mu$, II: non-compact state space.
- Wils P: Inhomogeneous Perfect Fluid Cosmologies With A
Non-Orthogonally Transitive Symmetry Group,
Class. Quantum Grav. 8 (1991),
361
NB: Irrotational; one KVF HSO.
- Uggla C: Inhomogeneous Self-Similar Cosmological Models,
Class. Quantum Grav.
9 (1992), 2287
NB: $H_{3}$ transitive on timelike
3-surfaces; reduction of EFE to system of ODEs; Hamiltonian
formulation; $p(\mu) = (\gamma-1)\,\mu$.
- Van den Bergh N, J Skea: Inhomogeneous Perfect Fluid
Cosmologies, Class. Quantum Grav. 9 (1992), 527
NB: Both KVF HSO;
$p=(\gamma-1)\,\mu$; models are asymptotically self-similar.
- Patel L K, N Dadhich: Singularity-Free Inhomogeneous Models
with Heat Flow, Class. Quantum Grav. 10 (1993), L85
- Mars M: New Non-Separable Diagonal Cosmologies,
Class. Quantum Grav. 12
(1995), 2831
NB: Quotient of norms of the two orthogonal KVF
constant along $u$.
- Mars M, J M M Senovilla: Non-Diagonal $G_{2}$ Separable
Perfect Fluid Spacetimes, Class. Quantum Grav. 14
(1997), 205
NB:
Orthogonally-transitive symmetry group; separation of variables
assumed.
- Senovilla J M M, R Vera: Dust $G_{2}$ Cosmological Models,
Class. Quantum Grav. 14 (1997), 3481
- Hern S D, J M Stewart: The Gowdy $\mathbb{T}^{3}$ Cosmologies
Revisited, Class. Quantum Grav. 15 (1998), 1581.
Also: Preprint
gr-qc/9708038.
- Hübner P: More about Vacuum Spacetimes with Toroidal Null
Infinities, Class. Quantum Grav. 15 (1998), L21.
Also: Preprint
gr-qc/9708042.
- Kichenassamy S, A D Rendall: Analytic Description of
Singularities in Gowdy Spacetimes, Class. Quantum Grav.
15 (1998), 1339
NB: Transforms EFE to a system of Fuchsian PDE for
constructing singular solutions.
- Senovilla J M M, R Vera: $G_{2}$ Cosmological Models
Separable in Non-Comoving Coordinates,
Class. Quantum Grav. 15 (1998), 1737.
Also: Preprint
gr-qc/9803069.
- van Elst H, G F R Ellis, B G Schmidt: On the Propagation
of Jump Discontinuities in Relativistic Cosmology, Preprint
gr-qc/0007003,
uct-cosmology-00/06, AEI-2000-039
Selected References
Last revision: Fri, 18-8-2000 (This page is under construction)